Digital Radio

There are a few different technologies commonly used in two-way radio. One is digital voice, a la Motorola ASTRO / Project 25’s CAI (IMBE), which is a 9600bps (9.6kbps) digital stream. Another interesting technology is trunking: a city might have 12 talkgroups (think “virtual channels”), but only 4 frequencies. One frequency is designated as a “control channel,” which is a digital stream announcing system status. When you want to transmit, your radio will go out to the controller and get assigned one of the frequencies, and the system will then announce that you’re transmitting on one of them, and all radios in your group will switch over and listen. This allows much greater spectrum utilization: rather than needing a new frequency for every group that might want their own channel, you just need to license enough frequencies for however many simultaneous conversations you expect.

I’ve been thinking that it’d be interesting to merge the two technologies. Technologies like Speex will let you process audio at exceptionally low bitrates, seemingly as low as 3.4kbps. (And they have some neat technology, like variable bit-rate encoding and even further drops in data transfer in between words, dropping quite low for when it’s just background noise.) So I think it’d be neat to start a “data network” at 32 kbps, which could be done with relatively low bandwidth. You could keep one frequency, and yet fit as many as 7 or 8 simultaneous conversations on it. (And you can take its VBR support one step further, and have it scale to fit system capacity: on a system with minimal activity, allow 8-16 kbps, but when the system is starting to fill up, drop down to 4 kbps.) HE-AAC (also known as AACPlus) looks promising too, although it’s a proprietary technology.

And since it’s now a 100% data network, you can do what I’ve always thought mobile radio systems, especially those used by public safety agencies, ought to do: put a GPS unit in each radio, and have them embed GPS coordinates in each transmission, as well as periodically announcing their coordinates in the background.

The net result is insanely efficient (radio) bandwidth usage. For example, Boston PD has 16 frequencies licensed, but it’s rare for more than 2 or 3 to be in use at any given moment. They could get more efficient by switching to a trunking system, maybe with 5 frequencies (plus a control channel). Of course with an established system, there’s really no incentive to, but I digress. But if they could get entirely usable digital audio at 3-8 kbps, they could actually move to a single frequency and support multiple, simultaneous conversations.

Another neat side-effect is that linking the systems would get quite easy: the entire system, with multiple conversations, could even fit over a single dial-up modem link. And you can have better “emergency” support, although most trunking systems seem to do it anyway: public safety radios carry an “orange button,” which will signal an emergency to the radio system. Analog systems do this by basically making the radios “obnoxious”–they’ll just keep transmitting a distress signal over and over, increasing the odds that they get through. With an all-digital system, they can just send packets indicating an emergency, and have the network make way for them, going so far as to terminate existing conversations if needed.

Oh, and another novel benefit is power management. If I’m on a handheld radio and I’m standing twenty feet away from the tower, I can dial my power down as low as it goes and still make it in fine. But if I’m a few miles away, I need to be using the highest power I can to make sure I’m making it. Of course, no one in the field fiddles with power settings. (In fact, most radios don’t make this something the user can do.) But if you just exchange a bit of signal strength info in the data flowing between radios, you can make this automatic. As I talk to the tower, it’ll be periodically confirming that it’s hearing me. But when it does that, rather than just using a boolean, “Yup, got it,” it can send me signal strength data, and my radio can dial down power until it’s at a, “I’m still getting 100% of your packets but I wouldn’t go any lower in power…” point. The net result is longer battery life. (And potentially, less interference to distant users of the same frequency.) As a really obscure benefit, if you’re transmitting this information, and also embedding GPS coordinates in your transmissions, the system could silently log all of this and generate coverage maps, which would get more and more detailed over time.

One thought on “Digital Radio

  1. You can check out Speex Samples here. 4 kbps seems entirely usable to me, especially with VBR turned on. My major problem is getting past the accent, which is something that isn’t exactly limited by bitrate.

Leave a Reply

Your email address will not be published. Required fields are marked *